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I SIMPLIFICATIONS IN THE BEHAVIOR OF

VISCOELASTIC COMPOSITES WITH GROWING DAMAGE
+

R.A. Schapery*

Civil Engineering Department

3 Texas A&M University

College Station, TX 77843

* ABSTRACT

Some analytical results for the mechanical behavior of elastic composite

materials and structures with growing damage are summarized and then extended

to viscoelastic media. The effect of strain rate only at crack tips is

considered first; it is shown that if the crack speed is a strong function of

energy release rate, the overall mechanical response is like that for an aging

elastic material. Both stable crack growth and unstable crack growth followed

by arrest produce this aging-like behavior. Viscoelastic behavior throughout

one or more of Lhe phdses is then introduced. A simplification is used in3 which only one relaxation modulus characterizes the viscoelasticity, apart

from that at crack tips. Upon replacing the physical displacements in the

response for an elastic material by quantities called pseudo displacements, a

simple model for viscoelastic composites with growing damage is obtained.

1. Introduction

The problem of developing a realistic mathematical model of the

mechanical behavior of viscoelastic composites with growing damage is a

difficult one. However, it is believed that considerable simplification may

be introduced in the description of both the intrinsic viscoelastic behavior

and the damage, while retaining the essential elements needed for a realistic

description of deformation and fracture behavior of many composites of 4 v

mM-E C E(Eengineering interest. The emphasis of this paper is on simplifications which

appear to be applicable at least to particle and fiber reinforced polymers

when the matrix is soft relative to the particles or fibers. The underlying

model for elastic behavior with damage is not restricted in this way. 0
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I We shall not give a general review of the literature in this area; but,

instead, contributions of the author on the issue of simplification are

3 emphasized. For a broader view of the subject, the reader is referred to work

by Onat and Leckie (1988) and Weitsman (1988), where a tensorial description

3 of damage is addressed. The state variables used in the present paper to

characterize global deformation and the damage may be scalars or tensors, but

there is no need here to identify them as such. Work on a nonlinear

viscoelastic composite-like material, polycrystalline ice, is relevent to the

present work. For some studies which address both viscoelasticity and damage

growth see Harper (1986, 1989), Karr and Choi (1989), Schapery (1989) and

Sjolind (1987).

3 The present discussion is based in-part on results from Schapery (1990),

as summarized in Section 2 where elastic behavior with damage growth is

covered. In Sections 3 and 4 we fill in some of the details concerning

effects of growing cracks which were only touched upon by Schapery (1990). In

addition, some new results are obtained for the case of a body with

distributed cracks which become unstable, grow dynamically, and then are

arrested. Rate effects at crack tips only are considered in Sections 3 and 4,

while simultaneous effects of global and crack-tip viscoelasticity are

discussed in Section 5.

S2. Elastic Behavior with Damage Growth

We consider an elastic structure or material whose thermodynamic state is

3 a function of independent generalized displacements qj(j = 1,2,...J) and

internal state variables Sm(m = 1,2,...M) as well as temperature or entropy;

inelastic behavior arises from changes in the Sm . Generalized forces Qj are

defined in the usual way in that

6W' = Q.6q. (j not summed) (1)

for each virtual displacement 6qj, where 6W' is the virtual work. Then, from

thermodynamics

Q.= aW/aqj (2)

3 where W is the Helmholtz free energy (when temperature is used as an

independent state variable) or the internal energy (when entropy, instead of

temperature, is an independent variable). For brevity, thermal effects will

not be considered here, and therefore we shall refer tO W simply as the

strain energy. The generalized displacements qj may be, for example, the

I



13
uniform strains in a material element and Qj the conjugate stresses, or qj and

Qj may be, respectively, the displacements and forces applied to a structure.

I The internal state variables serve here to define changes in the

structure such as micro- or macro-cracking, and are called structural

parameters. Whenever any one m O, we specify as the evolution law,

fm= AWs/aSm (3)

3 where Ws = Ws(Sm) is a state function of one or more Sm; also, fm is the

thermodynamic force,

I fm -aW/aSm (4)

The left side of equation (3) is the available force for producing changes in

Sm , while the right side is the required force. For any specific set of

processes (i.e. histories qj(t)), equation (3) may not be satisfied for all M

of the parameters; if it is not, those Sm will be constant. The subscript r

or p will henceforth be used in place of m to designate the parameters that

3 change, which are taken to be R in number.

The total work done on the body by Qj during an actual process (i.e., a

process for which parameters change in accordance with equation (3)), starting

at some reference state, is denoted by WT,

3 WTE = Qjdqj (5)

where the summation convention for repeated indices is used. From equations

3 (2)-(5) we find

WT= W + Ws  (6)

3 where W = Ws = 0 in the reference state. Thus, Ws may be interpreted as that

portion of the total work WT which contributes to changes in the structure.

The second law of thermodynamics provides an inequality as a constraint

on the changes in state,

Ws= T S >0 (7)

where T is absolute temperature and S' is the entropy production rate. Even

if equation (3) is satisfied for any one Sr , this inequality may not allow it

to change. Moreover, instantaneous values of the Sr are such that they

minimize the total work when the body passes through stable states; i.e.,

AWT/aSr = 0 (8)

I(a2WT/aSraSp)6Sr6S P 0 (9)
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U
It is observed that equation (3) represents R equations for finding the

3 Sr as functions of qj. Then, WT = WT(qj,Sr(qj),Sq) where the Sq are the

constant parameters. From equation (5),

3 Qj= aW T/aq j  (10)

showing that the body exhibits hyperelastic behavior during the time any

3 particular set of parameters Sr undergoes change. Because the total work is a

potential during inelastic processes, the incremental stiffness matrix is

symmetric. Conversely, given that the stiffness matrix is symmetric when one

or more Sr change, then both equations (3) and (10) follow.

If forces act on crack faces then they have to be included in the set Qj
unless they are associated with frictionless contact; in the latter case, the

effect of crack opening and closing may be taken into account through the form

3 of the strain energy function. Coulomb friction, if significant, cannot be

accounted for through a work potential, and therefore the stiffness matrix is

not necessarily symmetric during processes involving crack face sliding. If,

however, one can use a potential to characterize the relationship between

crack-face forces and relative displacements between crack faces, equation

(10) may be extended to this case by including this potential (which may

depend on additional structural parameters) in WT; such a simplification is

3 applicable with surface free-energy effects (Schapery, 1990) and was proposed

by Schapery (1989) to account for crack-face friction in ice under

3 compression.

3. Rate Effects at the Crack Tip

3 Here we provide the background to Section 4; in that section it is shown

that a familiar equation for crack speed, discussed next, leads to equation

(3) as an approximation.

Suppose that the local crack tip speed 1 (at an arbit.ary point on the

crack edge) obeys a power law in local energy release rate G,

k G q  (11)

where, for now, we assume q is a positive constant; also, G = -aW/aA where

is the strain energy of a body with one or more cracks less the surface free

energy, and aA is an increment in crack surface area. The surface free energy

is usually negligible (which we assume here) so that W = W. The coefficient k

may change with time for various reasons, including transient temperatures,I
I
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1 material aging, and mode-ratio effects; if the latter exist, we assume the

mode ratio is constant. It will be helpful to write k = clk1 , where cI is a3 positive dimensionless function of time and k, is a positive constant which
has dimensions appropriate for the units used in equation (11). Now,

integrate equation (11) with respect to time and then take its qth root,

Aal/q = LG k 1I/q (12)

3 where Aa a-ao, ao is the crack size at t=O, and

LG = [fGqd&-II/q (13)Io
is the so-called Lebesgue norm of G; also,

t
f c,(t')dt' (14)

is reduced time.

If q = -, then LG = G., where G is the largest value of G up to and

including the current time (Reddy and Rasmussen, 1982). For many materials

O<<q <-, which leads to an approximation for LG which is practically as simple
as for q = -. Consider first the case of power-law reduced-time dependence
G - P where p :O. Then,

I LG= k24I/qG (15)

in which 1

in wh c k2= (pq + I) - q (16)

The accuracy of equation (15) was studied by Schapery (1982) (using pseudo

3 strain rather than energy release rate as the argument of the Lebesgue norm)

for cases in which the argument was a nondecreasing function of E, not

3 necessarily a power law. In terms of G used here, let us define p as a

logarithmic derivative,

p = d log G (17)
d log

where p 0. With q ? 4, good agreement was reported between equation (15)

5 and the value of LG found by numerical integration for a variety of histories

with p = p(&). If q is large or p is not strongly time dependent, then k2 may

be taken as a constant, which we shall do here; however, even if p is negative

or k2 is not constant, approximations like that in equation (15) can be
developed, and they are useful in view of numerical integration difficulties

3 encounted when q>>1 (Schapery, 1982).

Use of equation (15) in (12) yieldsI
I
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I G = ( 1a/)l/q/k2k1 1/q (18a)

which replaces equation (11) as the means for predicting crack growth. The

left side is the available work/area for crack growth; therefore the right

side may be interpreted as the required work. Equation (18a) is like the

crack growth equation for a brittle elastic material, where the right side is

the critical fracture energy, say Gc. However, in contrast to brittle elastic

3 behavior, Gc here varies with crack growth and time.

That the Lebesgue norm depends primarily on the current value of G when

q>>l, rather than its entire history of variation, is obviously due to the

integrand (Gq ) being a strongly increasing function of G and the assumption
dG/d >_ 0. Thus, even when the power law equation (11) is not applicable we

expect to be able to use a crack growth law of the type

G = Gc (Aa/ ) (18b)

to predict instantaneous values of aa. One may arrive at equation (18b)

directly by starting with

I a kf(G) (19a)

I where k is such that f(1) = 1. The form of equation (11) results by using the

exponent

3 q - log f/log G (19b)

(Alternatively, one could define q as a logarithmic derivative instead of a

3 ratio.) Then, if q>>1 and G > 0 it is anticipated that equation (18a) will

be a good approximation, although its accuracy has not yet been studied. As q

is now a function of G, one needs to solve for G; this yields equation (18b),

in which Gc is not necessarily a power law in Aa/&.

Another generalization of interest is for cyclic loading when the basic

growth law is like equation (11) or (19), but 9 and G are replaced by da/dN

and the maximum value of G over a cycle, respectively. Obviously, the above5 results may be used in this case, but a reduced time based on N, rather than

t, enters. With a small modification one may also treat in the same way the

case where the amplitude of variation of G over a cycle is used in place of

the maximum G (Schapery, 1990).

It should be observed that when G < G and q>>1 then LG, equation (13),

is practically constant if the time period for which G < G is not extremely
long. This implies a 0 constant and from (15) thatI

I
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S= k1/q G (20)2 L Z

where & is the reduced time at which G first drops below the largest value

G1 . This behavior is taken into account in the elastic-like model if we

assume a = 0 when G < Gc, where Gc = G c(Aa/ ). If G later increases to

G,2 say at time &L' then Gc again varies as in equation (18); but & should

be replaced by &-(L- & ) for continuity of Gc. In some cases, such as for

3 cyclic loading, it may be necessary to account for contributions to LG when G

is close to G I by modifying equation (15) (Schapery, 1982).

In arriving at equation (18) it was not necessary to specify explicitly

the manner in which G varys with loading or with geometry of the one or more

cracks that may exist. However, this variation certainly will affect the

time-dependence of crack growth and thus determine the accuracy of equation

(18) and whether or not a physically acceptable solution Aa exists. In order

I to illustrate this point, let us consider two special cases before discussing

the connection between equations (3) and (18).

First, observe that if the energy release rate is constant in time,

equation (18) is an exact result. This situation exists for some elementary

delamination and transverse microcracking problems in laminates when the

applied displaccment is constant. A second more interesting case is that for

which 
G = aG1  

(21)

where G, is a function of only the applied loads or displacements; this form

may be derived by dimensional analysis for a linear or nonlinear homogeneous

body with an isolated, penny-shaped crack of radius a or straight-edged,

3 through-the-thickness crack of length a. Equation (18a) then can be written

as

3 (a - a0)I/q/a = k2 (kl)I/q G1  (22)

If G1 0 this equation predicts that a is a positive function of for

O<&<f, where

f=a 0 (q-l)q- /kl(k 2qaoGl)q (23)I •
Also, a = at & = and there is no solution for

> Y The crack size at time & f is

a = a0q/(q-1) (24)

5 (Note that a = a if q>>1.) Equation (23) is the limiting time for which a

I
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U physically meaningful, stable solution is obtained. Therefore f may be

interpreted as the fracture time, unless the crack growth is arrested by
interaction with, for example, originally remote particles or fibers.

When equation (21) is used in the original growth law (11), with q>1, we

obtain as the exact solution

a/ao= (-Ii) 1/(l-q) (25)
m where

I,= (q 1)kla°(q-l) 1Gqd1o (26)0 0
Observe that crack size is a monotone increasing function of time and

a = a = - at the time for which 11 = 1. Denoting this fracture time by F' we

find

I F {(q-l)klao(q-l)G q}-i (27)

if G, is constant. Both f and F depend on ao and G, in the same way,

and they are equal if we take k2 = (q-1)/q; if q>>l, then k2= 1, as in
equation (16). Thus, for this case in which an instability develops,

approximate equation (18a) provides essentially the same crack growth behavior

5 as the exact solution.

4. Work Functions with Rate Effects.

Let us now combine the results in Sections 2 and 3. We assume the

instantaneous geometry of all cracks in the body may be defined by the3 structural parameters Sm. For many particulate and fibrous composites, the
cracks tend to be at or close to interfaces or, at least, to have orientations

and shapes defined more by the microstructural geometry than by the loading.

The orientation of a crack relative to that of the loading will of course
affect its rate of growth. Elliptical delaminations, transverse cracks (which

are rectangular cracks with planes par'llel to fibers and normal to ply
surfaces) and cracks between hard particles and a soft matrix are of this5 type. For these cases it is realistic to use a finite and possibly small

number of parameters to define the damage state.

Stable Crack Growth: Use the right side of equation (18a) to define a

crack work function for the nth crack,

n-nf aaldA/k2(kl&)I/q  (28)

where the integral is taken over the area of growth of the n crack, A - A0,5 which may not be planar or otherwise regular; the various constants such as q

I
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I may be different for different cracks. The growth aa is a local value which

is defined along a curve that is normal to the moving crack edge. If

q = -this equation is independent of the history of the crack geometry, and
yields simply Wn - A-A . Since 1 << q < -, the effect of history is weak, and

it is therefore appropriate to use an idealization in which aa is a single-

valued function of A. For example, for cracks which can be idealized as

planar, through-the-thickness cracks with straight edges, use a = A/B and ao =

Ao/B where B is thickness; thus

SWn= (A-A0)X/xk 2(klB)I/q (29)

where

x = (l+q)/q (30)

On the other hand if the cracks are more or less elliptical with moderate

aspect ratios or circular use A = 7a in equation (23) and find

Wn= 2rq(a-ao)I/q{a(a-ao)/q

+ (a2- a2)1/x(l+2q)k2(kl )I/q  (31)

3 in which the substitution of

a = (A/m)112  (32)

3 into this result gives Wn= Wn(A,&). The area of each crack is a function of

one or more of the parameters Sm, by previous assumption; if, for example, the

cracks are elliptical, we may use for each crack two parameters, the major and

minor axes. The total crack work function, considervng all cracks, is denoted
i by Ws,

Wsy z Wn  (33)

n
so that Ws=Ws(Sm, ), as in equation (3), but now with time-dependence. If q

is the same for all cracks, then Ws- k-

A crack work function based on the more general equation (18b) may be
easily derived. For additional generality, also use A = Ala , where A1 and

a are positive constants which may vary from crack-to-crack. In this case we

5 find for the nth crdck,
P ao  -~(

Wn= Aa0U- f (0 ' + ) ')dp' (34)

where p E aa/c and aa = (AI)- ao. Then equation (33) yields W s(Sm, 0.

We may now use equation (18) to arrive at (3). Let 6A be the local

I
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I increment in area for a process in which one or more crack edges advance an

infinitesimal amount. Multiply equation (18b) by 6A and um along the crack

edges, which yields -6W = 6Ws . We want this work equality to be valid for all

changes 6A = (aA/aSm)6Sm due to arbitrary changes 6Sm* This requirement

3 yields equation (3), where fm and WS are given, respectively, by equations (4)

and (33). Inasmuch as Ws= Ws(SmS) , the behavior is the same as for an agirg

elastic material. However, it should be recalled that the aging stops during

periods of "load reduction" (cf. equation (20)).

For the special case in which there are only two different q's, say one

q<- and one q=-, equations (28) and (33) provide the simple power-law time-

dependence,

I W= W+ /q (35)

whtre W = W (S m) and Wq=Wq(Sm). Then, the R parameters Sr which change in a

process are found from the R equations,
aW aW @Wq -I/q(36)

aw a5w aS
I r =T'r aSr

Even if the qj are constant in time, equation (36) yields time-dependent

values of Sr , and thus time-dependent stresses or forces through equation (2)

or (10).
The connection hetween equation (3) and crack growth theory was

established by considering the propagation of individual cracks. However, in

modeling damage growth associated with microcracking, it is normally practical

3 to use only a small number of averaging structural parameters which serve to

approximate the actual effect of damage on overall mechanical behavior. As

done previously (Schapery, 1990) let us require the approximate model to

exhibit the same overall limited path-independence of work as implied by

equation (10). Inasmuch as equation (3) is necessary and sufficient for such

limited path-independence, this growth law should be used in the approximate

model. Carrying this argument one step further, we would want the time-

3 dependence of Ws to be essentially the same as that for the more complete

representation, e.g. equation (35).

3 Unstable Crack Growth: The special energy release rate in equation (21)

leads to unstable crack growth, which is predicted to occur at a time

if, equation (23), tnat depends on the initial size. We shall consider a

situation in which there are many parallel, planar, penny-shaped cracks with a

distribution of radii a0. It is assumed that when each crack becomesI
I
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U unstable, it rapidly grows in the original plane to a much larger size and

then is arrested by some obstacle. By considering the effect of each crack on

overall mechanical response after it reaches its final arrested size, we can

develop a work potential WT which obeys the equations of Section 2. The

3 procedure is analogous to that used by Schapery (1990, Appendix B) for brittle

elastic behavior. In this earlier work, generalized forces were used instead

of displacements as independent variables. While either set could be used,

for consistency with work in the previous sections, we shall use

displacements.

The work potential is found to be

WT= W0- gG1+ Ws  (37)

where Wo = Wo(qj) is the strain energy without cracks and G, = Gl(q j ) is the

function in equation (21). Also, g=g(S) and Ws= Ws(S,&), where

Ws= ( -l) Q  )-

Ws- f c,-l j9 dS' (38)3 k2q(kl )l/q S (5)- dS'

in which Q a (q-1)/q and SI is the initial radius of the largest pre-existing

3 crack. The function g is unspecified here, but depends on the details of

microstructure and accounts for the effect of randomly or regularly

distributed arrested crack sizes.

The stationary work condition, equation (8), is to be satisfied by the

proposed WT. From equations (37) and (38),
aW T __0___Q_____

as = {- GI+ kq-)Q S- Q dS (39)k~qkl i/qdS

5 The quantity in braces vanishes in view of equation (23) if we consider S to

be the initial radius of the crack which becomes unstable at the current time;

3 this equation provides S = S(GI, ). The smaller a crack is, the longer the

time is for the crack growth to become unstable, so that 9<0. The body is

3 stable if a2WT/aS 2> 0; from equation (39) one finds that dg/dS < 0. This

condition on g not only assures stability, but assures that the entropy

production inequality, equation (7), will be satisfied when t<0. If

additional crack orientations are introduced, the work potential will depend

in a similar way on additional structural parameters.

3 We conclude that the work potential based on unstable (micro)crack growth

and arrest exhibits the same behavior as that based on stable growth. The

m power law time-dependence of Ws appears in both cases, except its physical

I
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U origin is different. For stable growth, it reflects the direct effect of

continuous growth, while for unstable growth it arises from the time delay for
instability. The two types of growth may co-exist without changing the form

of time-dependence.

l 5. Global Viscoelasticity

One approach to developing a model which ircludes viscoelastic effects3 throughout the matrix and fibers, besides that at crack tips, would be to
introduce a rate-type evolution law for a portion of the internal state
variables, say S (e = 1,2,.. .B), of Section 2. For example, for linear
viscoelastic behavior with damage given one would use (e.g. Schapery, 1964),

8= bBy fY  (40)

where bBy is a symmetric matrix, and f = -aW/aS in which W is quadratic in

qj and S . The remaining internal state variables would be associated with
the damage, and thus obey equation (3); bBy may depend on them. The problem3 with this approach is that the simple crack growth theory in Section 3 and 4

is not in general applicable because there is not a simple correspondence3 between elastic and viscoelastic fields in the continuum. Unless considerable

simplification is introduced in the description of the global viscoelastic

behavior of the constituent materials, it does not appear to be possible to
develop a practical analytical model. Here, we shall briefly review a
manageable approach the author has used to account for linear and nonlinear
viscoelasticity of the matrix; it permits the use of a slightly modified form

of the crack growth theory of Sections 3 and 4.3 Let us give the constitutive equation without damage and then discuss the

modification needed in the elasticity theory with damage. With small strains

and rotations the constitutive equation for any one of the constituent
materials or phases, in terms of stresses aij and strains cij(i,j = 1,2,3), is

given as
o= awp/aCjR (41a)

where Wp= W(Ei ) andp iR = E 1 t ( - ) a ij d T (41b)ij--- ER f Et-,t 3.1

are so-called pseudo strains. The quantity E(t-i,t) is the relaxation
modulus, allowing for aging through the second argument, while ER is a free

constant which can be selected to have the units of modulus so that R isIji
!i
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m dimensionless. As discussed elsewhere (Schapery, 1981) equation (41) contains

the special cases (1) linear isotropic viscoelasticity (if the Poisson's ratio

is constant), (2) nonlinear elasticity (E=ER) and (3) linear and nonlinear

viscous theory. Inasmuch as Wp is like strain energy density, but is a

function of pseudo strains, we call it pseudo strain energy density. It is

easily shown that a multiphase continuum may be characterized by equations

like (41) if each of the phases obeys equation (41) and all have the same

relaxation modulus; phase-to-phase differences are reflected in the particular

pseudo strain energy density employed. If the deformations in any phase are

relatively small, so that it may be assumed rigid, then of course its

relaxation modulus is not restricted to be the same as that for the other

3 phases.

A simple correspondence exists between the mechanical state of elastic

3and viscoelastic bodies, with or without crack growth, when equations like

(41) are dpplicable (Schapery, 1981, 1984). Large deformations may be taken

into account by using Piola stresses and deformation gradients (in place of

E ij); however, there is a basic limitation in that the pseudo strain energy

density may be significantly affected by large rotations. This correspondence

3enables us to use all of the theory in Sections 2-4 by simply replacing qi

with generalized pseudo displacements,

i R iw dq.I ~ ~-~)~ dt (42)

while retaining the Qi as generalized forces. The superscript R comes from

use of the name "reference elastic solution" for the set of variables

(qR, Qi); they may be interpreted as the displacements and forces in and on

an elastic body which is identical to that of the viscoelastic body except for
Rthe relaxation modulus. Observe that when the qiR are used in Section 4, there

will be hereditary effects due to both damage growth and viscoelasticity of

the continuum.

6. Conclusions
An approach to modeling the mechanical response of viscoelastic

composites with changing structure has been described. Although the rate-type

evolution law used for the changing structure is that commonly identified with

crack growth, equations (11) and (19a), it is not necessarily limited to crack

3 growth. Indeed, the approach may be used for any evolution law of the form

m= F m(f m)F m(S m) for each m, where Fm is a strongly increasing function of the

m associated thermodynamic force fm" This is a special case of the form used by

1
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U Rice (1971) in a study of constitutive relations for metal and other solids;

he assumed tm= m(fm , S 1..,SM) for each m.

Experimental verification of the viscoelastic behavior predicted by the

simplified theory described herein is presently very limited. However,

3 existing results on particle-filled rubber with constant and varying damage

(Schapery, 1982) and on fiber-reinforced plastic with constant damage (Tonda

3 and Schapery, 1987) do support the theory.
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